MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G   /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,






Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .

O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]

O teorema afirma

  / G* *=  = [          ] ω           .

Onde

  •  é um operador hamiltoniano, dependendo de um parâmetro contínuo  ,
  • , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de  ,
  •  é a energia (autovalor) do estado , ie  .  / G* *=  = [          ] ω           .


Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5]

Prova

Essa prova do teorema de Hellmann – Feynman exige que a função de onda seja uma função própria do Hamiltoniano em consideração; no entanto, também se pode provar de maneira mais geral que o teorema se aplica a funções de onda sem função própria que são estacionárias (derivada parcial é zero) para todas as variáveis relevantes (como rotações orbitais). A função de onda Hartree – Fock é um exemplo importante de uma função própria aproximada que ainda satisfaz o teorema de Hellmann – Feynman. Um exemplo notável de onde a Hellmann – Feynman não é aplicável é, por exemplo, a teoria de perturbações de Møller – Plesset de ordem finita, que não é variacional.[6]

A prova também emprega uma identidade de funções de onda normalizadas   - que as derivadas da sobreposição de uma função de onda com ela mesma devem ser zero. Usando a notação de braçadeira de Dirac, essas duas condições são escritas como

  / G* *=  = [          ] ω           .
  / G* *=  = [          ] ω           .

A prova então segue através da aplicação da regra do produto derivado ao valor esperado do Hamiltoniano visto como uma função de λ:

  / G* *=  = [          ] ω           .

Prova alternativa

O teorema de Hellmann-Feynman é na realidade uma consequência direta e, em certa medida trivial, do princípio variacional (o princípio variacional de Rayleigh-Ritz ) do qual a equação de Schrödinger pode ser derivada. É por isso que o teorema de Hellmann-Feynman vale para funções de onda (como a função de onda Hartree-Fock) que, embora não sejam funções próprias do Hamiltoniano, derivam de um princípio variacional. É também por isso que ela se aplica, por exemplo, na teoria funcional da densidade, que não é baseada na função de onda e para a qual a derivação padrão não se aplica.

De acordo com o princípio variacional de Rayleigh-Ritz, as funções próprias da equação de Schrödinger são pontos estacionários do funcional (que denominamos Schrödinger funcional por questões de concisão):

  / G* *=  = [          ] ω           .

Os autovalores são os valores que a funcional Schrödinger assume nos pontos estacionários:

  / G* *=  = [          ] ω           .

 

 

 

 

(3)

Onde  satisfaz a condição variacional:

  / G* *=  = [          ] ω           .

Vamos diferenciar a Eq. (3) usando a regra da cadeia :

  / G* *=  = [          ] ω           .

Devido à condição variacional, a Eq. (4), o segundo termo na Eq. (5) desaparece. Em uma frase, o teorema de Hellmann – Feynman afirma que a derivada dos valores estacionários de uma função (al) em relação a um parâmetro do qual ela pode depender pode ser computada apenas a partir da dependência explícita, desconsiderando a implícita . Devido ao fato de que o funcional de Schrödinger só pode depender explicitamente de um parâmetro externo através da equação Hamiltoniana. (1) segue trivialmente.

Comments

Popular posts from this blog